Steady-state analysis and design of class-E rectifier using discrete Fourier transforms

نویسندگان

چکیده

The steady-state analysis and design of a generalized class-E rectifier are reconsidered from circuit simulation techniques. From the considerations, we identify that this method corresponds to harmonic balance via partitioning technique enhance convergence Newton-Raphson method. Then, extend using discrete Fourier transforms. Moreover, nonlinear model is incorporated design. Thus, can obtain accurate characteristics within level. Although well-known in studies, related papers abstractly describe algorithms. Hence, our as concrete possible compensate for ambiguousness.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete–time Fourier Series and Fourier Transforms

We now start considering discrete–time signals. A discrete–time signal is a function (real or complex valued) whose argument runs over the integers, rather than over the real line. We shall use square brackets, as in x[n], for discrete–time signals and round parentheses, as in x(t), for continuous–time signals. This is the notation used in EECE 359 and EECE 369. Discrete–time signals arise in t...

متن کامل

Discrete–time Fourier Series and Fourier Transforms

We now start considering discrete–time signals. A discrete–time signal is a function (real or complex valued) whose argument runs over the integers, rather than over the real line. We shall use square brackets, as in x[n], for discrete–time signals and round parentheses, as in x(t), for continuous–time signals. This is the notation used in EECE 359 and EECE 369. Discrete–time signals arise in t...

متن کامل

Computation of Convolutions and Discrete Fourier Transforms by Polynomial Transforms

Discrete transforms are introduced and are defined in a ring of polynomials. These polynomial transforms are shown to have the convolution property and can be computed in ordinary arithmetic, without multiplications. Polynomial transforms are particularly well suited for computing discrete two-dimensional convolutions with a minimum number of operations. Efficient algorithms for computing one-d...

متن کامل

Discrete Fractional Hartley and Fourier Transforms

This paper is concerned with the definitions of the discrete fractional Hartley transform (DFRHT) and the discrete fractional Fourier transform (DFRFT). First, the eigenvalues and eigenvectors of the discrete Fourier and Hartley transform matrices are investigated. Then, the results of the eigendecompositions of the transform matrices are used to define DFRHT and DFRFT. Also, an important relat...

متن کامل

Faster Homomorphic Evaluation of Discrete Fourier Transforms

We present a methodology to achieve low latency homomorphic operations on approximations to complex numbers, by encoding a complex number as an evaluation of a polynomial at a root of unity. We then use this encoding to evaluate a Discrete Fourier Transform (DFT) on data which has been encrypted using a Somewhat Homomorphic Encryption (SHE) scheme, with up to three orders of magnitude improveme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Theory and Its Applications, IEICE

سال: 2022

ISSN: ['2185-4106']

DOI: https://doi.org/10.1587/nolta.13.615